Impotence, also known as ED – erectile dysfunction, is a quite common health issue that several men have to face. According to the Massachusetts Male Aging Research, it could be estimated that 1/2 of men in the world may experience erectile dysfunction at some point. At age 40, about 40% of men have to face this sexual health issue, and it would be even more common in people at older ages.
Much of the emphasis on erectile pathophysiology has been placed on penile smooth muscle function and cavernosal hemodynamics. The neuroanatomy and neurophysiology of erection can be characterized but its full extent is poorly understood. Neurologic disease does not always reproducibly affect erections in a uniform manner compared to other types of sexual dysfunction (SD). This offers many obstacles to understanding the role the nervous systems plays in SD and consequently obscures what treatment options readily optimize erections specific to the neurologic insult.

Positron emission tomorgraphy (PET), and functional magnetic resonance imaging (fMRI) have led to a greater understanding to which center are activated during arousal. These imaging studies measure increases in cerebral blood flow or changes in cerebral activity on a real-time basis. Studies are performed when male subject are aroused by visual cues (usually sexual explicit photos or videos) and compared to images obtained during exposure to sexually neutral cues differences can be measured. Several studies have identified that the inferior frontal lobes, inferior temporal lobes and insular gyrus, and occipital lobes are involved with processing arousal cues, although each are likely to process different stimuli (20-23).

It is important for clinicians prescribing these drugs to make the patient aware of the action of the drugs especially the fact that they do not result in an immediate erection, and that they do not cause an erection without sexual stimulation. There is frequently a great expectation when men begin using these drugs and it is wise to temper their enthusiasm and explain they do not work immediately, and may not work every time, but also let the patient know that if these drugs do not work, there are other options.
ED is a common occurrence after SCI, occurring in up to 80% of men, and results from disruption of the nerve pathways essential for erection (24,25). Different degrees of ED may occur depending on the spinal cord level of injury (LOI), extent of lesion and timing from injury. Reflexogenic erections can occur with lesions above L3 or L4 when the erectile spinal reflex arc remains intact. Psychogenic erections can occur with low lesions in the sacral and lumbar spinal cord but may not occur in complete lesions above T9 that can damage sympathetic outflow. Additionally, reflexogenic erections are not likely to occur in the spinal shock period that occurs after the initial cord trauma. Conversely, their occurrence may signal that the period of shock is over (26). Typically SCI affects younger men in their “sexual prime” and ED is associated with decreased quality of life (27).

The Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE) study, designed to determine whether an individual man’s sexual outcomes after most common treatments for early-stage prostate cancer could be accurately predicted on the basis of baseline characteristics and treatment plans, found that 2 years after treatment, 177 (35%) of 511 men who underwent prostatectomy reported the ability to attain functional erections suitable for intercourse. [45]
A vacuum erection device is a plastic tube that slips over the penis, making a seal with the skin of the body. A pump at the other end of the tube makes a low-pressure vacuum around the erectile tissue, which results in an erection. An elastic ring is then slipped onto the base of the penis. This holds the blood in the penis (and keeps it hard) for up to 30 minutes. With proper training, 75 out of 100 men can get a working erection using a vacuum erection device.