Besides PDE5 inhibitors and among second-line therapies are VCDs which are clear plastic chambers placed over the penis, tightened against the lower abdomen with a mechanism to create a vacuum inside the chamber. This directs blood into the penis. If an adequate erection occurs inside the chamber, the patient slips a small constriction band off the end of the VCD and onto the base of the penis. An erection beyond 30 min is not recommended. These devices can be a bit cumbersome, but are very safe.40
Normal erectile function depends on the release of NO and endothelial-dependent vasodilation of the penile arteries. The ‘artery size’ hypothesis, first described by Dr Montorsi, offers an explanation why men are more likely to develop ED before a myocardial infacrtion. It is believed that atherosclerosis affects all vascular beds equally but smaller arteries are more likely to become occluded than larger arteries.31 32 The penile arteries are 1–2 mm while the coronary arteries are 3–4 mm. Thus, the same degree of endothelial dysfunction and atherosclerosis is more likely to occlude blood flow in the penile arteries compared with the coronary arteries. The penile arteries therefore serve as a sensitive indicator for subsequent CVD. This theory is supported by the fact that ED occurs approximately 3 years prior to cardiac symptoms in virtually all patients with chronic coronary syndrome whereas patients with acute coronary syndrome have a much lower prevalence of sexual dysfunction.32
Additionally, the physiologic processes involving erections begin at the genetic level. Certain genes become activated at critical times to produce proteins vital to sustaining this pathway. Some researchers have focused on identifying particular genes that place men at risk for ED. At present, these studies are limited to animal models, and little success has been reported to date. [4] Nevertheless, this research has given rise to many new treatment targets and a better understanding of the entire process.
Erections are initiated and maintained via integration of afferent inputs in the supra sacral regions of the central nervous system. Regions of the brain cited to have key roles in the integration of signals include the medial amygdala, MPOA, periaqueductal gray matter, paraventricular nucleus (PVN), and ventral tegmentum among others (16). Studies in animal models, particularly in rats, have been paramount in identifying these key areas of signal integration and control. Electrostimulation of the MPOA, PVN and hippocampus lead to erection and lesions in these areas may prevent erection (17). Marson et al. injected labeled pseudorabies virus into rat corpora cavernosa and traced them to neurons in the spinal cord, brain stem and hypothalamus (18). Stimulation of the rat dorsal nerve led to increased firing in the MPOA not found elsewhere (19). Axonal tracing in animals have shows direct projections from the hypothalamus to the lumbosacral autonomic erection centers. Oxytocin and vasopressin have been identified as central neurotransmitters within the hypothalamic nuclei and may have a role in penile erection (17). These signaling studies identifying key areas of erectile response integration may explain how ED is associated with cerebrovascular accident (CVA), Parkinson’s, epilepsy and MS.
Erections are initiated and maintained via integration of afferent inputs in the supra sacral regions of the central nervous system. Regions of the brain cited to have key roles in the integration of signals include the medial amygdala, MPOA, periaqueductal gray matter, paraventricular nucleus (PVN), and ventral tegmentum among others (16). Studies in animal models, particularly in rats, have been paramount in identifying these key areas of signal integration and control. Electrostimulation of the MPOA, PVN and hippocampus lead to erection and lesions in these areas may prevent erection (17). Marson et al. injected labeled pseudorabies virus into rat corpora cavernosa and traced them to neurons in the spinal cord, brain stem and hypothalamus (18). Stimulation of the rat dorsal nerve led to increased firing in the MPOA not found elsewhere (19). Axonal tracing in animals have shows direct projections from the hypothalamus to the lumbosacral autonomic erection centers. Oxytocin and vasopressin have been identified as central neurotransmitters within the hypothalamic nuclei and may have a role in penile erection (17). These signaling studies identifying key areas of erectile response integration may explain how ED is associated with cerebrovascular accident (CVA), Parkinson’s, epilepsy and MS.
Erections occur in response to tactile, olfactory, and visual stimuli. The ability to achieve and maintain a full erection depends not only on the penile portion of the process but also on the status of the peripheral nerves, the integrity of the vascular supply, and biochemical events within the corpora. The autonomic nervous system is involved in erection, orgasm, and tumescence. The parasympathetic nervous system is primarily involved in sustaining and maintaining an erection, which is derived from S2-S4 nerve roots.
A vacuum erection device is a plastic tube that slips over the penis, making a seal with the skin of the body. A pump at the other end of the tube makes a low-pressure vacuum around the erectile tissue, which results in an erection. An elastic ring is then slipped onto the base of the penis. This holds the blood in the penis (and keeps it hard) for up to 30 minutes. With proper training, 75 out of 100 men can get a working erection using a vacuum erection device.
×